Bounds for zeros of Meixner and Kravchuk polynomials

نویسندگان

  • A. Jooste
  • K. Jordaan
چکیده

The zeros of certain different sequences of orthogonal polynomials interlace in a well-defined way. The study of this phenomenon and the conditions under which it holds lead to a set of points that can be applied as bounds for the extreme zeros of the polynomials. We consider different sequences of the discrete orthogonal Meixner and Kravchuk polynomials and use mixed three term recurrence relations, satisfied by the polynomials under consideration, to identify bounds for the extreme zeros of Meixner and Kravchuk polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of classical orthogonal polynomials of a discrete variable

In this paper we obtain sharp bounds for the zeros of classical orthogonal polynomials of a discrete variable, considered as functions of a parameter, by using a theorem of A. Markov and the so-called HellmannFeynman theorem. Comparisons with previous results for zeros of Hahn, Meixner, Kravchuk and Charlier polynomials are also presented.

متن کامل

Bound on the Extreme Zeros of Orthogonal Polynomials

Using chain sequences we formulate a procedure to find upper (lower) bounds for the largest (smallest) zero of orthogonal polynomials in terms of their recurrence coefficients. We also apply our method to derive bounds for extreme zeros of the Laguerre, associated Laguerre, Meixner, and MeixnerPollaczek polynomials. In addition, we consider bounds for the extreme zeros of Jacobi polynomials of ...

متن کامل

A Discrete Approach to Monotonicity of Zeros of Orthogonal Polynomials

We study the monotonicity with respect to a parameter of zeros of orthogonal polynomials. Our method uses the tridiagonal (Jacobi) matrices arising from the three-term recurrence relation for the polynomials. We obtain new results on monotonicity of zeros of associated Laguerre, Al-Salam-Carlitz, Meixner and PoJlaczek polynomials. We also derive inequalities for the zeros of the Al-Salam-Carlit...

متن کامل

Real zeros of Meixner and Krawtchouk polynomials

We use a generalised Sturmian sequence argument and the discrete orthogonality of the Krawtchouk polynomials for certain parameter values to prove that all the zeros of Meixner polynomials are real and positive for parameter ranges where they are no longer orthogonal. AMS MOS Classification: 33C45, 34C10, 42C05

متن کامل

Creation and Annihilation Operators for Orthogonal Polynomials of Continuous and Discrete Variables

We develop general expressions for the raising and lowering operators that belong to the orthogonal polynomials of hypergeometric type with discrete and continuous variable. We construct the creation and annihilation operators that correspond to the normalized polynomials and study their algebraic properties in the case of the Kravchuk/Hermite Meixner/Laguerre polynomials. 1. Introduction. In a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013